
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

1

Abstract—Modern communication standards, such as 5G new
radio (5G NR), require a high speed decoder for highly irregular
quasi-cyclic low density parity check (QC-LDPC) codes. A widely
used approach in QC-LDPC decoders is a layered decoding
schedule which processes the parity check matrix in parts, thus
providing faster convergence. However, pipelined layered decoding
architecture suffers from data hazards that reduce the throughput.
This paper presents a novel architecture, which can facilitate any
QC-LDPC decoding without stall cycles caused by pipeline hazards.
The decoder conveniently incorporates both the layered and the
flooding schedules in cases when hazards occur. The paper also
presents the genetic algorithm based optimization of the decoding
schedule for better signal-to-noise ratio (SNR) performance. The
proposed architecture enables insertion of a large number of
pipeline stages, thus providing high operating frequency. As a
case study, the FPGA implementation for WiMAX, DVB-S2X,
and 5G NR provided coded throughput of up to 1.77 Gbps,
4.32 Gbps, and 4.92 Gbps at 10 iterations, respectively. The results
show a strong throughput increase of 30%–109% compared with
the conventional layered decoder for 5G NR for the same SNR
performance. The decoder provides highly efficient utilization of
resources when compared with the state-of-the-art solutions.

Index Terms—5G new radio, genetic algorithm optimization,
high throughput, layered decoding, low density parity check
(LDPC) codes, pipeline, quasi cyclic (QC) LDPC

I. INTRODUCTION
UE to their excellent error correcting performance, low
density parity check (LDPC) codes [1] are increasingly

used in many applications, e.g. in storage devices [2] and in
many wired [3] and wireless communication standards [4]–[8].

LDPC code is completely defined by its parity-check matrix
(PCM), but can also be represented using the Tanner graph [9].
LDPC code is sparse, i.e. of low density, so both the encoding
and the decoding processes can be of low computation
complexity. The decoding process is usually based on the
iterative message-passing algorithm [10], [11], which can

Manuscript received on June 30, 2020; revised August 11, 2020; accepted
August 16, 2020.

Vladimir L. Petrović, Dragomir M. El Mezeni and Lazar V. Saranovac are
with the University of Belgrade – School of Electrical Engineering, Bulevar
kralja Aleksandra 73, 11120 Belgrade, Serbia (e-mail: petrovicv@etf.bg.ac.rs;
elmezeni@etf.bg.ac.rs; laza@etf.bg.ac.rs).

Miloš M. Marković and Andreja Radošević are with the Tannera LLC,
Braće Nedića 26, 11111 Belgrade, Serbia (e-mail: milos@tannera.io;
andreja@tannera.io).

Digital Object Identifier: 10.1109/TCSI.2020.3018048
Final, published article available on IEEE Xplore:
 https://ieeexplore.ieee.org/document/9179021

provide very good performance in terms of achievable
information rate, making LDPC codes able to closely approach
the channel capacity [12].

Traditionally, LDPC codes, whose connections between
variable and check nodes are generated randomly, provide the
best achievable information rate. However, practical LDPC
codes are designed to have some structural constraints in order
to provide possibility for parallel processing of multiple nodes
in both the encoding and the decoding processes [2]–[8].
Quasi-cyclic (QC) LDPC code [13] has a PCM that is
composed of circularly shifted identity sub matrices. This code
can be represented using the base graph matrix, and the width
of the identity submatrix, frequently called the lifting size (Z)
[14]. Base graph matrix contains nonnegative shift values at
positions of identity sub matrices, which is convenient for the
storage of the code parameters.

In the message-passing algorithm, nodes communicate using
messages that are passed along the edges of the Tanner graph.
The messages are associated with the probabilities that the
corresponding bits are zero or one. Their values are iteratively
updated in the graph nodes. In the so-called flooding schedule
[15], all variable nodes simultaneously pass their messages to
the corresponding check nodes and all check nodes
simultaneously pass their messages to the variable nodes. In the
layered schedule, the PCM is viewed as a set of horizontal [16]
or vertical [17] layers where each layer represents a component
code. In a single layered iteration, messages from variable to
check nodes and vice versa are passed consecutively for each
layer. This way, the probabilities are updated more frequently
during a single iteration, thus speeding up the decoding process.
This is particularly convenient for the QC-LDPC codes since
their PCM is already naturally divided into layers. The row
layered decoding (with the PCM divided in horizontal layers) is
used more frequently due to more efficient memory utilization
and lower computation complexity [18], [19].

The decoding computations can be done serially, but such
configuration provides extremely small throughputs, although
the required hardware is minimal. Fully parallel decoders are
the fastest, but require extremely high amount of hardware
resources, caused mainly by routing congestion, especially for
long code words [20]. Consequently, the widely accepted
approach is using the partially parallel architectures that allow
design tradeoffs between the obtained throughput and hardware
complexity [21].

High throughput partially parallel LDPC decoding can be
achieved mainly in two ways: 1) by increasing the operating

Flexible High Throughput QC-LDPC Decoder
with Perfect Pipeline Conflicts Resolution and

Efficient Hardware Utilization
Vladimir L. Petrović, Graduate Student Member, IEEE, Miloš M. Marković, Dragomir M. El Mezeni,

Lazar V. Saranovac, Member, IEEE, and Andreja Radošević

D

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

clock frequency and 2) by increasing the number of parallel
processing units [22]. The operating frequency is increased
primarily by pipelining. Although superior in the speed of the
convergence, pipelined layered decoding hardware suffers
from data dependencies between successive layers, since
pipeline stages induce delays in memory write operations.
Consequently, additional stall cycles need to be inserted in
order to provide pipeline conflict resolution.

Number of stall cycles can be reduced using the offline
read/write scheduling based on the PCM reordering techniques
[23]–[27]. In general, reordering techniques cannot eliminate
all stall cycles, especially for less sparse base graph matrices. In
order to increase the sparsity of the base graph matrix, reducing
the size of the circulant sub matrices can be performed [24].
Reducing the lifting size reduces the parallelism, thus
increasing latency and reducing the throughput of a decoder.
However, the necessary hardware resources are reduced and
used more efficiently since stall cycles are removed, thus it
effectively increases the hardware usage efficiency (HUE)
expressed as the throughput divided by used hardware
resources. Multiple frame decoding has been presented in [28]
and [29] for mitigation of data dependencies, but the latency of
such approach is multiplied with the number of frames decoded
at the same time [22]. Additionally, this method requires high
additional memory cost [30]. In [31], the HUE is increased by
shrinking the resources needed for storage of messages and by
code specific based optimization of memory access schedule.

The method from [32] requires read operations of the a
posteriori probability for both the calculation of variable-to-
check messages and for the a posteriori probability update. In
order to implement this idea, two separate memory blocks must
constantly be used during the decoding which increases the
memory cost, thus reducing the HUE. In [33], the a posteriori
probability update is postponed whenever the pipeline conflict
occurs. The conflicted check node contributions are stored in a
separate register bank. They contribute to the a posteriori
probabilities only when a new non-conflicted update happens.
Such postponing of the a posteriori probability updates can
reduce the layered schedule performance significantly if a base
graph matrix is dense, i.e. if it has a large percent of
nonnegative entries with regard to the total number of entries.

Decoding irregular codes whose PCM does not have the same
number of ones in all rows brings additional challenges.
Additional stall cycles are needed whenever the successive
layers have different check node weights. However, irregular
codes can achieve a higher information rate than regular codes
for the same signal-to-noise ratio (SNR) [34], which is why
they are used more frequently.

Throughput improvement can also be achieved using more
parallel processing elements, which would provide processing
more than Z nodes at the same time. Parallelism higher than the
lifting size can reduce latency and increase throughput, but
requires multiple simultaneous memory accesses. This
indicates that code specific message memory mapping is
necessary to avoid conflicts in the parallel memory accesses
[33], [35]–[37]. When it is not possible to avoid all conflicts
using the message memory mapping, stall cycles are added. As

a result, the throughput cannot be multiplied with the same
factor as the hardware utilization, which reduces the HUE.

If additional code structure constraints are allowed, it is
possible to design a code which can be decoded using even
higher parallelism level. One such code class, called cyclically-
coupled QC-LDPC codes [30], has a PCM which is designed in
such way that it is possible to instantiate multiple parallel sub
decoders, thus providing high throughput. However, there is
still no communication standard that supports these codes.

Another issue in highly parallel LDPC decoder
implementations is the input data availability at the beginning
of the decoding process. In most of the previous designs ([23],
[25], [29], [33], [38]–[40]), the input data is stored in a separate
memory buffer. The input data is rewritten to the decoding
memory at the beginning of the decoding, which requires
additional clock cycles. However, it would be better if the input
buffer is organized in such a way that it can become the
decoding memory for the newly loaded codeword, and that the
decoding memory can become the input buffer memory for the
next code word. This double buffering does not require
additional clock cycles for rewriting the input data [27].

This paper focuses on a highly efficient solution that resolves
most of the previously mentioned issues. This is achieved by
the following main contributions:

1) Complete removal of stall cycles that come from change
of check node weights by proper buffering inside check node
processing units.

2) Complete resolution of pipeline conflicts that occur due to
memory access hazards without postponing the a posteriori
probability update. Whenever a conflict occurs, it is resolved by
suitable switching to the flooding schedule. There is no waiting
for the previous layer memory update. Such hybrid schedule
decoding allows insertion of a large number of pipeline stages,
thus leading to the high operating frequency of the decoder.

3) Hybrid schedule optimization, which reduces the number
of pipeline conflicts, thus providing better SNR performance,
which is almost the same as the SNR performance of the fully
layered decoder. Even if the remaining performance loss is
compensated with adding additional iterations, the throughput
of the proposed decoder is significantly higher than the
throughput of a fully layered decoder.

4) Stall cycles are removed in such a way that the proposed
architecture can be applied to any QC-LDPC code or some
irregular repeat accumulate (IRA) codes. As a case study,
decoders for IEEE 802.16 (WiMAX), DVB-S2X and 5G NR
standards are implemented.

The rest of the paper is organized as follows: Conventional
layered LDPC decoder architecture and decoding algorithms
are described in section II. Section III presents the architecture
of the proposed hybrid schedule decoder and the algorithm for
the offline SNR performance optimization. Results and the
discussion are presented in section IV. Detailed SNR
performance and throughput analysis is focused on most
challenging irregular codes from 5G NR. The implementation
and HUE results are given also for WiMAX and DVB-S2X for
better comparison with previous works. In the end, the
conclusion is given in section V.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

II. LAYERED QC-LDPC DECODER

A. Message-passing decoding algorithms
This subsection briefly presents the soft iterative decoding

algorithms most frequently used in binary LDPC decoders.
Message-passing decoding known as Belief Propagation (BP)
algorithm ([10], [13]) consists of the following steps:
initialization, check node updates and variable node updates. In
an additive white Gaussian noise (AWGN) channel, variable
nodes v are initialized with the a priori log-likelihood ratios
(LLRs) calculated from the channel outputs yv and channel
noise variance σ2, as

()
() 2

0 | 2
log

1|
v vin v

v
v v

P b y y
LLR

P b y σ
=

= =
=

, (1)

where P(bv = b | yv) is the conditional probability that the bv is
equal to b, given that the channel output yv is received. Right
after the initialization, a priori LLRs are assigned to messages
that variable nodes send to the check nodes along the edges of
the Tanner graph – variable-to-check messages
(2

in
v c vM LLR=). Each check node calculates new messages that

will be sent to the corresponding variable nodes using the
following equation:

() ()1
2 '2 '2

' \ ' \
sgn−

∈ ∈

 
= Φ Φ ×  

 
∑ ∏

c c

c v v c v c
v V v v V v

M M M , (2)

where Vc represents the set of all variable nodes connected to
the check node c, and where Φ(x) = −log(tanh(x/2)). Each
variable node now updates associated LLR (also referred to as
intrinsic LLR or the soft output for the variable node v) with its
a posteriori value, as in (3), and new variable-to-check
messages as in (4).

1
, , '2

' v

it it it
v apost v apost c v

c C
LLR LLR M−

∈

= + ∑ (3)

1 1
2 , '2

' \v

it it it
v c v apost c v

c C c
M LLR M+ −

∈

= + ∑ (4)

In (3) and (4), Cv represents the set of all check nodes connected
to the variable node v and it is the index of the current iteration.
Note that in the first iteration, old a posteriori LLR value is the a
priori channel LLR, i.e. 0

,
in

v apost vLLR LLR= , and that 0
'2 0c vM = .

Based on (3) and (4), variable-to-check messages can also be
calculated as

1
2 , 2 .it it it

v c v apost c vM LLR M+ = − (5)
Additionally, it is clear from (5) that LLRs and messages satisfy
the following equation:

1
, 2 2 .it it it

v apost v c c vLLR M M+= + (6)
The described approach of updating variable and check nodes

is frequently called a flooding decoding schedule.
As it can be observed in (2), the check node update requires a

complex calculation which would be inefficient to implement
in hardware. This is why it is often simplified as

() ()2 '2 '2' \ ' \
min sgn ,
∈

∈

= × ∏
c

c

c v v c v cv V v v V v
M M M (7)

which is called a min-sum approximation [41]. The min-sum

approximation drastically reduces the complexity of the check
node update calculation, but it yields significant loss in SNR
performance of the decoding. This is happening because the
magnitude of the check-to-variable message is usually
overestimated. This effect can be compensated by correcting its
magnitude by multiplication with a normalization factor α, or
by subtracting an offset factor β like in (8) and (9). These
approximations are known as a normalized min-sum and an
offset min-sum approximation, respectively [42].

() ()2 '2 '2' \ ' \
min sgnα
∈

∈

= × ∏
c

c

c v v c v cv V v v V v
M M M (8)

() ()2 '2 '2' \ ' \
max min ,0 sgnβ

∈
∈

 = − × 
  ∏

c
c

c v v c v cv V v v V v
M M M (9)

For quick reference, the summary of notations used
throughout the paper and in this section is given in Table 1.

B. Layered decoder architecture
As mentioned before, the PCM in the layered decoding

schedule can be observed as a set of component codes’ PCMs
[16]. All component codes share the same variable nodes,
meaning that multiple component codes contribute to the
update of the same LLRs. In a single component code, i.e.
layer, each variable node is connected to only one check node.
However, one component code can contain multiple check
nodes connected to separate variable nodes, as in QC-LDPC
code PCM.

For each layer, variable-to-check messages are calculated
based on the previously updated LLR values and
check-to-variable messages from the previous iteration. The
difference from the flooding schedule (equation (5)) is that
LLRs are updated more frequently and that ,

it
v apostLLR value

from (5) is replaced with the LLR calculated in one of the
previous layers, as in

1
2 2 ,lj li it

v c v c vM LLR M −= − (10)

TABLE I
SUMMARY OF FREQUENTLY USED NOTATIONS

Notation Meaning
N Codeword length
H Parity check matrix (PCM) of the LDPC code
Z Lifting size of the QC-LDPC PCM
v Variable node index
c Check node index
Vc Set of all variable nodes connected to the check node c
Cv Set of all check nodes connected to the variable node v
y Channel outputs
σ2 Noise variance

in
vLLR Input a priori log-likelihood ratio for a variable node v

Mv2c Message from variable node v to check node c
Mc2v Message from check node c to variable node v

LLRv,apost/LLRv A posteriori log-likelihood ratio for a variable node v
Superscript it or l Indicates Mv2c, Mc2v, or LLRv,apost at iteration it or at layer l

itmax Maximum number of iterations
Nl Number of layers in the parity check matrix

x Vector of current codeword bits
(defined by signs of a posteriori LLRs)

s Syndrome vector, calculated by s = x × HT

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

where lj is the index of the current layer, li is the index of the
layer in which the previous update of the variable node v has
happened, and it is the index of the current iteration. Thereby,
the variable-to-check message already contains contributions
from all check nodes from previous layers. Check-to-variable
message is calculated using one of the check node update
equations described in subsection II.A ((2), (7), (8) or (9)). The
calculated check-to-variable message for the current layer is the
check-to-variable message for the current iteration at the same
time (2 2

lj it
c v c vM M=). The variable-to-check message 2

lj
v cM has

been already updated indirectly through the LLR updates in
previous layers and is never updated directly in a single layer,
since the check node c is the only node connected to the
variable node v. Hence, the LLR update is done using the
already calculated variable-to-check message as

2 2 .lj lj it
v v c c vLLR M M= + (11)

The iterative process is shown algorithmically in Fig. 1.
Conventional layered decoder architecture is shown in

Fig. 2. Variable-to-check messages are calculated in variable
node units (VNU) for each layer from the a posteriori LLRs as
in (10). These messages are buffered in the Mv2c FIFO for later
use in the LLR update calculation. To facilitate proper
connections between the variable and the check nodes, LLRs
are cyclically shifted by the value equal to the corresponding
shift of the identity submatrix in the PCM before the variable
node calculation. Variable-to-check messages are passed to
check node units (CNU) where new check-to-variable
messages are calculated using (2), (7), (8) or (9). New
check-to-variable messages are used for calculation of the new
intrinsic LLRs, which are then cyclically shifted in the opposite
direction. LLR memory always contains up-to-date LLRs.

If the arrangement of the LLRs in the LLR memory can be
shuffled, it is worth mentioning that the usage of the reverse
cyclic shifter is not necessary [39]. In that case, the shift values
of the first cyclic shifter should be modified in order to obtain
proper connections in the Tanner graph. Additionally, the
decoded bits should be reversely shifted at the end of the
decoding.

If the min-sum algorithm (or its variations) is used for the
decoding, the check node unit calculates the minimum and the
subminimum of the magnitudes of the received
variable-to-check messages (2

li
v cM). Besides that, the sign

product of signs of variable-to-check messages is calculated.
When the reading of a single layer LLRs is finished, a
minimum, a subminimum, a sign product and an index of the
minimum 2

li
v cM is stored in the pipeline register. New

check-to-variable message is calculated based on this data and

2
li
v cM . The subminimum value is needed since the influence of

the variable node to which the Mc2v is sent needs to be removed
as in (7), (8) or (9).

If the check node weight (CNW) of two successive layers is
different, stall cycles must be generated. If the CNW of the first
layer is higher than the CNW of the second layer, the
minimums calculation for the second layer needs to be paused

Inputs: parity check matrix H, input channel LLRs LLRin

Initialization:
 for v = 1 : N
 LLRv = LLRv
 for c ∈ Cv

Decoding:
 while it ≤ itmax and s ≠ 0
 for l = 1 : Nl
 for c = 1 : Z
 for v ∈ Vc
 load LLRv

 for v ∈ Vc
 calculate

 update

 store LLRv

 Soft decision: xv = signbit(LLRv), ∀v ∈ {0,1,…, N−1}
 Calculate syndrome: s = x × HT

 it = it + 1
Outputs: decoded bits vector x

0
2 0c vM =

{ }(), ,
2 '2 | ' \l it l it

c v v c cM f M v V v= ∈
,

2 2
l l it

v v c c vLLR M M= +

, 1
2 2

l l it
v c v c vM LLR M −= −

in

Fig. 1. Layered schedule decoding algorithm. N is the codeword length, itmax is
the maximum number of iterations, Nl is the number of layers in the PCM, and
f(.) is a check node update function defined by equations (2), (7), (8) or (9).

++CNUCNU

CNU

CNUCNUVNU

Cyclic
shifter

LLR
RAM

Mc2v RAM

Mv2c FIFO

Reverse
cyclic shifter

+
Mc2v

it

Mv2c
lj

Mc2v
it−1

LLRlj

LLRin

LLRli

Miniums &
sign product
calculation

Calculate
Mc2v

Mv2c
lj

Fig. 2. Conventional layered decoder architecture for min-sum based decoding

since there are check-to-variable messages yet to be generated
for the first layer. On the contrary, when all check-to-variable
messages are generated, the CNU output needs to wait for
minimums calculation block to be finished.

As mentioned before, in order to achieve high operating
frequency, it is necessary to place pipeline registers at the data
path. The added pipeline latency can cause memory access
conflicts. If stall cycles are not added, LLR update can
overwrite the contribution of the check nodes from the previous
layer [24]. Detailed explanation of stall cycle generation will be
given in subsection III.B.

If the number of the processing elements (VNUs and CNUs)
is equal to the lifting size Z, the coded throughput of the layered
decoder can be expressed as follows:

()
,CLK

circ stall max read

f N
T

n n it n
=

+ +
 (12)

where fCLK is the operating frequency, N is the codeword length,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

ncirc is the number of circularly shifted identity sub matrices in
the PCM, nstall is the number of inserted stall cycles because of
the memory access pipeline conflicts or the CNW change, itmax
is the maximum number of iterations, and nread is the number of
cycles needed for the preparation of all input LLRs if the new
codeword LLRs are not stored in the LLR memory during the
decoding of the previous codeword. The highest throughput is
obviously obtained if nstall and nread are zero and if the decoding
algorithm has fast convergence, i.e. if itmax is small. The highest
hardware usage efficiency is obtained if the hardware overhead
necessary for the above to be fulfilled is minimal.

III. HYBRID SCHEDULE QC-LDPC DECODER

A. Hybrid decoding schedule
As it is shown in (11), the intrinsic LLR update in a single

layered subiteration lj is done by the addition of the
variable-to-check message and newly calculated
check-to-variable message. The update can be further expanded
as

1
2 2 2 2

2 ,

lj lj it li it it
v v c c v v c v c v

li
v c v

LLR M M LLR M M

LLR M

−= + = − +

= + ∆
 (13)

where ΔMc2v is the contribution of the check node c to the LLR
that corresponds to the variable node v [32], [38]. If the new
LLR value is not written to the LLR memory at the moment
when it is needed for calculation of another variable-to-check
message Mv2c′, the contribution ΔMc2v will be lost. For this
reason, the layered decoder needs to wait until the LLR is
updated.

If two check nodes, one from the layer lj and another from
the layer lk, contribute to the intrinsic LLR at the same time,
than the LLR value after both updates is:

'2 ''2 ,lk li
v v c v c vLLR LLR M M= + ∆ + ∆ (14)

where c′ is the check node from the layer lj and c″ is the check
node from the layer lk. This way of updating LLRs can be used
to mitigate pipeline conflicts. Namely, if a memory access
pipeline conflict occurs, like in a layered schedule, it is not
necessary to wait for an LLR update. It is possible to read old
LLR values (LLRli in (14)) and add the check node
contributions as in (14). However, in this case two layers use
the same LLR value for variable-to-check message calculation.
Hence, the first layer does not contribute to the LLRs used in
the second one, which is characteristic for the flooding
decoding schedule.

In [33], if a conflict occurs, the contribution ΔMc′2v (called
residue) was stored in a separate register file and later added to
the LLR, which is updated by the second check node as

()2 '' ''2 '2 .lk lk it
v v c c v c vLLR M M M= + + ∆ (15)

Therefore the update is postponed until another check node
passes its message. This way, stall cycles are removed and the
method is called residue-based layered decoding. However, if
the base graph matrix is dense and if the number of pipeline
stages is high, the memory access conflicts can occur
frequently and postpone the LLR memory write operations
more than once, which can significantly reduce benefits of the

Inputs: parity check matrix H, input channel LLRs LLRin

Initialization:
 for v = 1 : N
 LLRv = LLRv
 for c ∈ Cv

Decoding:
 Thread 1: while it ≤ itmax and s ≠ 0
 for l = 1 : Nl
 for c = 1 : Z
 for v ∈ Vc
 load LLRv

 it = it + 1
 Thread 2: while it ≤ itmax and s ≠ 0
 for l = 1 : Nl
 for c = 1 : Z
 for v ∈ Vc
 calculate

 UPDATE: if conflictFree = true then

 else
 load LLRv

 store LLRv

 Soft decision: xv = signbit(LLRv), ∀v ∈ {0,1,…, N−1}
 Calculate syndrome: s = x × HT

 it = it + 1
Outputs: decoded bits vector x

0
2 0c vM =

in

{ }(), ,
2 '2 | ' \l it l it

c v v c cM f M v V v= ∈

, , 1
2 2

l it l it
v v c v c vLLR LLR M M −= + −

,
2 2

l l it
v v c c vLLR M M= +

, 1
2 2

l l it
v c v c vM LLR M −= −

Thread 1
Thread 2

Time
Fig. 3. Hybrid schedule decoding algorithm. The algorithm integrates two
processes: calculation of variable-to-check messages in Thread 1 and
calculation of new check-to-variable messages and LLR update in Thread 2.
Both threads work in parallel. Thread 2 is delayed for simulation of the pipeline
latency. The conflictFree variable is true if LLRv used for calculation in
Thread 1 was up-to-date.

layered decoding schedule. Moreover, some LLR updates may
never happen if they are postponed for each layer, which is an
extreme case. Furthermore, if the number of pipeline stages is
high, it is possible that many nodes would need postponed
updates, which causes high increase of the necessary register
file capacity. For these reasons, it would be important if the
LLR write operation is not postponed, but done as soon as the
check-to-variable message is ready. At the same time, the
contribution of all check nodes must be kept.

In this paper, LLRs are updated as soon as possible with the
preservation of all the check node contributions. As before,
there is no wait for the LLR update if a memory access conflict
occurs. The outdated LLRs are read in this case. When the
conflicted LLRs from one of the previous layers are ready, they
are written to the LLR memory as in the layered schedule, but
they are also buffered and used later in the LLR update process
of the current layer. The LLR update process in the current
layer for conflicted LLRs is done using the contribution ΔMc2v
as

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

''2 .lk lj
c vLLR LLR M= + ∆ (16)

This way, the LLR updates are as frequent as in the layered
schedule. Nevertheless, the schedule is still not fully layered,
since some LLRs are not always updated with the check node
contributions of the previous layer before their usage in
processing of one or a few next layers. Therefore, the decoding
schedule in this paper is called a hybrid schedule. The
algorithmic representation of the hybrid schedule is shown in
Fig. 3.

B. Decoder architecture
The detailed architecture of the proposed LDPC decoder

core is shown in Fig. 4. Almost all elements are modified
compared with the conventional layered architecture.

Firstly, the LLR RAM supports double-buffering as in [27].
It is composed of two separate simple dual-port RAM blocks –
one for the decoding of the current codeword (here referred as a
decoding memory) and another block, which is used for the
reading of the decoded LLRs of the previous codeword and for
the writing of the LLRs of the next codeword (here referred as a
buffer memory). The previous and the next codeword are in the
separate memory spaces. The proposed decoding method
supports soft outputs. However, if only hard outputs are
needed, the decoded LLRs do not need to stay in the RAM
block after the decoding. The better memory utilization is
obtained if only signs of LLRs are stored in the separate RAM
buffer. Described double buffering is necessary to avoid
additional latency at the beginning of the decoding, as outlined
in subsection II.B (it reduces the nread parameter from (12) to 0).

Proposed decoder runs without any stall cycle. In
conventional layered architecture, the CNU contains a register
for the Mv2c sign product (sgp), minimum (min0), subminimum
(min1) and the index of the minimum (idx0) – intermediate
data. It is used for storage of the intermediate data from the
previous layer while the new layer’s minimums are calculated.
At the same time, the stored intermediate data is used for
calculation of new check-to-variable messages for the previous

layer. The timing diagram of the CNU behavior for the example
base graph matrix is shown in Fig. 5.a). The base graph matrix
has 4 rows (layers in the PCM) and 8 columns. Each column of
the base graph matrix represents a set of Z variable nodes.
These sets are usually called variable node groups (VNGs).
Each entry in the base graph matrix represents the PCM’s
identity submatrix shift value. The timing diagram shows that
when the CNW of check nodes inside two consecutive layers is
different, either minimums calculation or new
check-to-variable messages generation must be stalled. In the
worst case scenario the processing must be stalled for
dc,max − dc,min clock cycles, where dc,max is the maximum CNW
and dc,min is the minimum CNW. In 5G NR, this number is 16,
which is significantly high value (dc,max is 19 and the dc,min is 3).
Each change of the CNW produces additional stall cycles.

In order to remove described stall cycles, the decoupling of
the CNU’s input and output must be done. Natural place for the
decoupling is after the calculation of intermediate data. For this
purpose, a decoupling FIFO buffer is inserted inside the check
nodes. The decoupling FIFO buffer prevents overwriting of the
intermediate data when layers with the different CNW are
processed without interruption. The only requirement for
maximal efficiency is that the first layer that is going to be
processed should be the one with the maximal CNW. The
necessary decoupling FIFO depth depends on the code
irregularity. For Wi-Fi, WiMAX or DVB-S2X, the necessary
depth is only 2. For more irregular codes the depth needs to be
higher, but not higher than , ,/c max c mind d   .

Memory access pipeline conflicts are solved as follows.
Whenever a reading of LLRs for the variable node group vg is
needed, it is checked if that VNG is used previously for another
layer calculation and is not yet updated. If so, the out-of-date
LLRs are read from the LLR memory, but the LLR update for
these LLRs will be done differently than in conventional
layered architecture. VNUs calculate variable-to-check
messages and pass them to the CNUs. However, if the outdated

Mv2c /−Mc2v FIFO
0
1

Cyclic
shifter

LLR
RAM0

1

outOfDate

RD1

RD2

WR1

WR2

CNU

Mins &
sgn. pr.

calc

sgp

min0

min1

idx0

D
ec

ou
pl

in
g

FI
FO

 b
uf

fe
r

Mc2v RAM

LLR update

VNU

Calc.
Mc2v

Reverse
cyclic
shifter

−1

LLRli

LLRinLLRout

LLRpatch

LLRlj

Mv2c /−Mc2v

Mv2c signs FIFO
sgnMv2c

Mc2v
it

Mc2v
it−1

Mv2c
lj

lj it−1

1 0 doPatch

0
Fig. 4. Architecture of the proposed QC-LDPC decoder core for hybrid schedule decoding

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

LLRs were read (indicated by the outOfDate signal in Fig. 4),
VNUs write negative old check-to-variable messages to the
FIFO instead of the new variable-to-check messages. They are
going to be used later for calculation of the contributions ΔMc2v.
Check-to-variable messages are calculated as usual.

The LLR update unit adds a new check-to-variable message
and the data from the Mv2c/−Mc2v FIFO. The result is either new
intrinsic LLR or a contribution ΔMc2v. In case that only the
ΔMc2v is calculated, it needs to be added to the LLR that is
already in the memory – here referred as a patch LLR

(LLRpatch). This is controlled by the doPatch signal in Fig. 4.
The read port of the decoding memory is always busy, so the
LLR should be read from the buffer memory. Therefore the
buffer memory needs to be used sometimes during the decoding
not only for the buffering of the previous and the next codeword
LLRs.

Whenever the LLR write operation occurs, it is checked if
LLRs, which are going to be written, are already read for one of
the next layers calculation. If so, the LLRs are written to the
buffer memory too. Further in the text, this will be called a

0 1 2 3 4 5 6 7
0
1
2
3

5 18 31 1 0
14 2 0 0

27 8 0 0
23 1

0
0

0 2 3 4 5 1 3 5 6 S 0 2 4 6 7 0 S
0 2 3 4 5 1 3 5 6 S 0

4 7 S

72 4 6 0 S4 7 S
0 2 3 4 5 1

0
Without the

decoupling FIFO:

0 2 3 4 5 1 3 5 6 0 2 4 6 7 0

0 2 3 4 5 1 3 5 6 0

4 7

72 4 6 0 4 7

0 2 3 4 5 1

0

3 5 6

2 3 4

vgin

vgout

Write new FIFO data

Get new FIFO data

vgin

vgout

Variable node group index (vg)

La
ye

r i
nd

ex

0
1
0 10 0 0 1 1 2 2 2 3 32

3
2

3
2 3 0 0 0 00 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 0 0 0 0

Decoupling FIFO
data indices

VNG index at the check node units’ input or output
Stall clock cycle

Indices of layers whose minimums, minimum index and sign product
are currently stored in the FIFO, k is index of the current FIFO output

New minimums ready
Output ready

j
2k

S
vg

Clock cycles in which check node unit’s input/output is ready for
processing of a new layer

(a)

With the
decoupling FIFO:

0 2 3 4 5 1 6 0 2 4 7
0 2 3 4 5 1 3 5 6 0 72 4 6 0 4 7 S

2 3 4
SS SS SS SS S SS

3 06

0 2 3 4 5 1 3 5 6 0 2 4 6 7 0

0 2 3 4 5 1 3 5 6 0

4 7

72 4 6 0 4 7

0 2 3 4 5 1

0

3 5 6

2 3 4

0 2 4 6

5

RD address

WR address

outOfDate

doPatch

Outdated
LLR readi

i

i Double write

Patched LLR
write

Layered:

Hybrid schedule:

RD address

WR address

(b)

0

Regular read
or writei

5 4 7

0 2 3 4 5 1 3 5 6 0 2 4 6 7 0

0 2 4 1 3 5

4 7

2 6 7

0 2 3 4 5 1

0

3 5 6

2 4

0 2 4 6

Residue-based layered schedule [33]:

RD address

WR address

3 5 6 0 74 0 4 3 5Residue index

i j

Residue write
for VNG i,
accumulated j
times

1 1 1 1 1 1 2 2 1 1

Fig. 5. Illustration of the stall cycles removal for an example irregular QC-LDPC code PCM. (a) Base graph matrix example and timing diagrams of check node
unit’s behavior without and with the decoupling FIFO buffer. If the decoupling FIFO buffer is not used, the processing must be stalled whenever new minimums are
ready, but the check-to-variable messages for previous layer were not all calculated yet, and whenever there are still no calculated minimums for generation of new
check-to-variable messages. If the decoupling FIFO is used, these stall cycles are removed. For better understanding, these diagrams do not include memory access
pipeline conflicts. (b) Timing diagrams of LLR memory accesses in layered, residue-based layered [33] and hybrid schedule LDPC decoders for the same base
graph matrix as in (a) and three pipeline stages. The layered decoder must not read LLRs that should be updated in the previous layer and must wait for their update.
In residue-based and hybrid schedule decoding, LLRs are read even though they are outdated. However, in residue-based decoding, LLR updates are postponed in
case of conflicts and check node contributions (called residues in [33]) are accumulated in a separate register bank. These contributions are added to LLRs when the
first regular LLR write operation happens, here referred as patched LLR write. In the proposed hybrid schedule, when the time for the update of LLRs comes, they
are written to both the decoding and the buffer memory (double write), since they are used later for patched LLR update. This way, LLR updates are not postponed
and check node contributions are added as soon as they are ready, hence providing faster convergence.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

double write. Whenever the double write happens, the buffer
memory’s write port is not available for write operation of the
next codeword LLRs. However, there are plenty of free cycles
for new codeword LLRs write operation to happen. The similar
situation is with the reading of the previous codeword LLRs.

In novel FPGA families, the RAM block size granularity is
usually such that a lot of the memory space is not used at all.
Even very long codewords leave considerable free space, which
can be used for double writes. For example, the storage of the
longest codeword in DVB-S2X would require
N/Z = 64800/360 = 180 locations, which is a significantly
smaller number than the minimal RAM block depth.

The hardware overhead for support of the hybrid schedule is
small and provides removal of all stall cycles in the decoding.

The timing diagram of LLR memory accesses in
conventional layered and proposed hybrid schedule
architecture is shown in Fig. 5.b). Additionally, the timing
diagram for residue-based schedule approach from [33] is
shown too, as it is an approach that removes stall cycles too, but
postpones LLR updates, as described in subsection III.A. The
example base graph matrix is the same as in Fig. 5.a) and the
number of pipeline stages is three. As shown, the layered
architecture requires insertion of a large number of stall cycles,
whereas in the residue-based and the proposed architecture
there are no stall cycles at all. The proposed architecture
provides LLR updates without postponing and hence gives
faster convergence than the residue-based architecture.

It should be noted that cyclic shifters shift messages instead
of LLRs, which provides resource savings, since message bit
widths are usually smaller than LLR bit widths [33]. This is of
crucial importance if flexible cyclic shifters should be
designed, such as in WiFi, WiMAX or 5G NR, since their
resource utilization is much higher than the resource utilization
of the fixed lifting size cyclic shifter.

The input and output interface modules are not shown in
Fig. 4. In a real-time system, input LLRs are usually streamed
using a streaming interface in groups determined by an
analog-to-digital converter (ADC), usually much smaller than
Z LLRs (e.g. up to eight in Xilinx’s RF-SoC platform [43]).
That is why the input interface module is designed to pack input
LLRs into groups of Z LLRs and write them to the buffer
memory whenever the entire block of data is ready and when
the buffer memory is available. If an input LLR that belongs to
the next group of Z LLRs is received at the input, while waiting
for the buffer memory availability, it is buffered inside the input
module. The output interface module unpacks LLRs (or hard
outputs) into the convenient bit width. Both input and output
interfaces have the streaming handshake control and make the
decoder easy to integrate in another system.

In many applications lifting sizes Z can significantly differ in
runtime [4], [5], [8]. This sets a flexibility challenge in the
design of the decoder. The main challenge in providing such
runtime flexibility is in the design of cyclic shifters [44]. In this
paper’s implementation examples, three shifters were designed.

The cyclic shifter for DVB-S2X does not need any
flexibility, since the lifting size is Z = 360. It is designed as a
three-stage shifter, where each stage shifts data incrementally

by multiples of 45, 8 and 1 respectively.
Flexible shifters for WiMAX and 5G NR are designed as two

stage shifters as in [45], where the first stage is a pre-rotator and
the second is a flexible QSN shifter [46]. The 5G NR lifting
size can take values of the form Z = a∙2j, where

{ }2,3,5,7,9,11,13,15a∈ and 0 ≤ j ≤ 7. Since j can take values
as small as 0, the pre-rotator needs to have outputs for multiple
rotation sizes. This is done as in [47].

C. SNR performance optimization
Hybrid decoding schedule can degrade the SNR performance

when the switch from layered to the flooding schedule is
frequent. This happens in cases when the base graph matrix is
dense and when the number of pipeline stages is high. High
operating frequency can be achieved only with a high number
of pipeline stages, so the SNR performance loss is inevitable for
QC-LDPC codes with a dense base graph matrix.

One way to avoid the performance loss is adding extra
iterations. Additional iterations can drastically reduce
throughput, but if aggressive pipelining provides a high
increase in the operating frequency, there may be enough time
margin to add extra iterations and still obtain significant
throughput enhancement.

However, adding additional iterations is not necessary if the
number of out-of-date LLR read operations is reduced using
offline PCM reordering. This subsection describes a method for
achieving optimal reordering based on the genetic algorithm,
i.e. for enhancement of the hybrid schedule decoding.

Layers can be processed in any order, as well as the VNGs
inside a single layer. The only constraint is that, in the end, the
layer schedule should be rotated circularly in such a way that
the first layer is the one with the maximal check node weight, as
outlined in subsection III.B. The processing schedule can be
represented as an array of Nl vectors. Each vector represents a
single layer. These vectors’ entries are VNG indices, i.e.
addresses of corresponding LLRs inside LLR memory. The
graphical representation of the original processing schedule for
the same example of the base graph matrix from Fig. 5 is shown
in Fig. 6.a). Since layers and VNGs inside layers can be
processed in any order, it is possible to find a schedule that
would give the minimal number of out-of-date LLR read
operations and hence the best SNR performance of the decoder.

A random schedule can have any permutation of layer
indices and any permutation of VNG indices inside any layer.
Finding the optimal schedule belongs to the traveling salesman
problem class, which is convenient for optimization using a
genetic algorithm (GA) [48]. The genetic algorithm has been
used for the layer reordering inside the PCM for a minimal
number of stall cycles in the layered LDPC decoder [24].
However, in hybrid schedule decoding, only layer reordering
cannot significantly reduce the number of outdated LLR
updates, especially if a number of inserted pipeline stages is
large. Consequently, the GA recombination and mutation proc-
esses are improved to include the ordering of VNG processing
inside a single layer. The optimization procedure is as follows.

The cost in the optimization procedure is the number of
outdated LLR read operations, or equivalently the number of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

L1
6 5 1 3

L3
7 0 4

L3
7 4 0

0 1 2 3 4 5 6 7
0
1
2
3 L3

L2

L1

L0
0 2 3 4 5

1 3 5 6

0 2 4 6 7

0 4 7

L2
7 2 4 0 6

L0
2 5 4 3 0

L1 5 1 6 3

L3 0 7 4

L1
3 5 1 6

L2
0 2 7 6 4

L0 5 2 0 4 3

L1
6 5 1 3

L2
2 4 7 6 0

L0 5 2 0 4 3

Recombinate

(a)

(b)

L3
7 0 4

L2
2 0 7 6 4

L0 5 2 0 4 3

Mutate

5 18 31 1 0
14 2 0 0

27 8 0 0
23 1

0
0

Fig. 6. (a) The base graph matrix example and its corresponding original
processing schedule. (b) The example of the recombination and the mutation of
schedules during the genetic algorithm optimization. Parent schedules are a
permutation of both layer and VNG indices of the original schedule.

double writes. It is a function of the processing schedule and a
number of inserted pipeline stages.

Initially, the population of random schedules is generated.
Iteratively, in each generation, the population is changed after a
recombination and a mutation. The recombination is done on a
number of parent schedules with the best cost for both layer
permutation and for each VNG permutation.

Recombination of two schedules is done by multiple two
vector recombinations: 1) recombination of layer arrays and 2)
recombinations of all vectors that represent a VNG schedule
inside layers. The array of layers is seen as a vector of layer
indices (e.g. (0, 1, 2, 3)).

Two vectors are recombined using the following procedure.
A sub vector is cut from the first vector at random positions and
placed to the same positions in the child vector. The remaining
positions are filled with the entries from a second parent vector
that are not already in the first vector while taking care to
maintain the order of the entries from the second vector. Firstly,
layer arrays are recombined. After that, each layer’s VNG
indices vector is matched with its corresponding VNG indices
vector from another schedule. Every matched vector pair is
recombined using the described procedure for vector
recombination. The example for base graph matrix from
Fig. 6.a) is shown in Fig. 6.b).

The mutation is done by changing places of random entries
in the schedule.

IV. RESULTS AND DISCUSSION

A. Schedule optimization results
Schedule optimization moves the decoder behavior towards

fully layered. Fig. 7 shows the number of up-to-date LLR read
operations for codes in 5G NR for different numbers of pipeline
stages nPS. All code rates for the base graph 1 were optimized
for layered behavior as described in subsection III.C. The
improvement in obtained number of up-to-date LLR read
operations with respect to the original schedule is expressed in
percents as

- - , - - ,

- - ,

100%,up to date optimized up to date original

up to date original

n n
I

n
−

= ⋅ (17)

where nup-to-date is the number of up-to-date LLR read operations
in one decoder iteration. As presented in Fig. 7, the obtained
improvement is between 25% and 120%, depending on the
code rate and number of pipeline stages.

Fig. 8 shows the percentage of up-to-date LLR read
operations depending on the number of pipeline stages for one
high code rate (R = 22/27) and one low code rate (R = 22/68)
from the 5G NR. Note that the results correspond to the PCM
with any lifting size, since the optimization procedure is done
based on the base graph matrix. In the 5G NR, low code rates’
base graph matrices are sparser than high code rates’ matrices.
Both the Fig. 7 and Fig. 8 show that the obtained improvement
is much higher at higher code rates. This is expected, since
sparser matrices cause less pipeline conflicts. Moreover, it can
be noticed from Fig. 8 that inserting pipeline stages induces

0.4 0.6 0.8
Code rate

0

100

200

300

LL
R

 r
ea

ds

Total

0.4 0.6 0.8
Code rate

0

25

50

75

100

Up
-to

-d
at

e L
LR

 re
ad

s (
%

)

0

25

50

75

100

Im
pr

ov
em

en
t (

%
)

Original

0.4 0.6 0.8
Code rate

0

100

200

300

LL
R

 r
ea

ds

Total
Up-to-date optimized
Up-to-date original

0.4 0.6 0.8
Code rate

0

25

50

75

100

Up
-to

-d
at

e L
LR

 re
ad

s (
%

)

0

25

50

75

100

Im
pr

ov
em

en
t (

%
)

Optimized
Original
Improvement

0.4 0.6 0.8
Code rate

0

100

200

300

LL
R

 r
ea

ds

0.4 0.6
Code rate

0

25

50

75

100

Up
-to

-d
at

e L
LR

 re
ad

s (
%

)

0

25

50

75

100

Im
pr

ov
em

en
t (

%
)nPS = 8

nPS = 13

nPS = 3

0.8

Fig. 7. Number of up-to-date LLR read operations in a single iteration in hybrid
schedule for various numbers of pipeline stages nPS and for all code rates from
base graph 1 of 5G NR.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

1 5 10 15
Pipeline stages

0

25

50

75

100
U

p-
to

-d
ate

 LL
R

 re
ad

s (
%

)
Optimized
Original

1 5 10 15
Pipeline stages

0

25

50

75

100

U
p-

to
-d

ate
 LL

R
 re

ad
s (

%
)

Optimized
Original

R = 22/27 R = 22/68

Fig. 8. Percentage of up-to-date LLR read operations as a function of number of
pipeline stages for rate 22/27 and rate 22/68 codes from 5G NR.

more significant decrease of up-to-date LLR read operations
for high code rates than for low code rates. Therefore, it is
expected that the SNR performance for high code rates should
be slightly more reduced than for low code rates, which will be
discussed in the next subsection.

B. SNR performance results
In order to show the influence of the hybrid decoding

schedule on the SNR performance, multiple Monte Carlo
simulations were done. The decoder was implemented as a
fixed-point offset min-sum decoder with LLRs quantized to 8
bits and messages quantized to 6 bits. All intermediate results
were quantized to the minimum number of bits that prevented
overflows, whereas only LLRs and messages were saturated
after the calculation. The modulation, noise generation and
demodulation were done in floating point precision, whereas
input LLRs were rounded before decoding. The decoder
supported layered, hybrid and flooding decoding schedules. For
hybrid schedule, both the original and optimized schedules
were simulated. Optimized schedule is here called an enhanced
hybrid schedule, since it achieves better SNR performance than
the original hybrid schedule. The implemented hybrid schedule
simulation model is a bit-accurate model of the hardware
implementation and provides the same SNR performance as the
measurements at the physical hardware.

The simulation was performed for three different maximum
iteration numbers (itmax = 10, itmax = 20, and itmax = 30). The
number of pipeline stages was set to 13, since it provided high
operating clock frequency in the hardware implementation of
the hybrid schedule decoder, as will be seen in subsection IV.C.

Frame error rate (FER) curves for code (10368, 8448) and
code (26112, 8448) from 5G NR (base graph 1 codes with code
rate 22/27 and code rate 22/68 and lifting size Z = 384) in
AWGN channel and for QPSK modulation are shown in Fig. 9.
The enhanced hybrid schedule gives better results than the
original hybrid schedule, especially at low code rate and small
maximum iteration number. An SNR performance loss can be
noticed for hybrid decoding schedule with respect to the
layered schedule in all cases. However, for the enhanced hybrid
schedule, the significant loss (above 0.2 dB) is seen only for
high code rate at small maximum number of iterations. If a
higher maximum iteration number is allowed or if the lower
code rate is used, the loss becomes lower than 0.1 dB. This
behavior is not unexpected, since the flooding schedule loss is

much higher at a smaller number of iterations and the hybrid
schedule is in between the flooding and the layered schedules.

As an additional analysis, Fig. 10 presents the average
number of iterations necessary for successful decoding in
enhanced hybrid schedule and layered decoders for several
codes from 5G NR. It shows once again that higher code rates
induce higher gap between performances of the two decoders.

As mentioned before, the remaining SNR performance loss
in enhanced hybrid schedule decoding can be removed if
additional iterations are added. Fig. 11.a) shows necessary
numbers of additional iterations needed for the same or better
SNR performance than the SNR performance of the layered
decoder for the same codes as in Fig. 10. It is noticeable that
more additional iterations should be added at high code rates
than at low code rates, which agrees with the higher loss at high
code rates if the same number of iterations is used.

Adding the additional iteration reduces throughput of the
hybrid schedule decoder. However, the layered decoder needs
more clock cycles for single decoding iteration, since stall
cycles should be added in order to mitigate pipeline conflicts.

Since all pipeline conflicts are removed, the number of
cycles necessary for a single iteration in a hybrid schedule
decoder is equal to the number of entries in the base graph
matrix. The number of stall cycles in a layered decoder depends
on the PCM and number of pipeline stages. In order to make a
fair comparison of layered and hybrid schedule decoders, the
number of cycles for the layered decoder is calculated for the
optimized decoding schedule. The layered schedule was
optimized using the genetic algorithm optimization like in
subsection III.C with the only difference in the cost, which in
this case was the number of stall cycles. Furthermore, the
pipeline conflicts due to the CNW change were considered to
be solved using the decoupling FIFO buffer as described in
subsection III.B. This way, the influence of factors that are not
specifically connected to the decoding schedule is removed.
Fig. 11.b) shows the calculated number of cycles per decoding
iteration for both layered and hybrid schedule decoders for base
graph 1 codes from 5G NR. It can be noticed that in layered
decoding, a large number of stall cycles should be added, which
can be explained with high density of 5G NR base graph
matrices.

Finally, the throughput difference between the layered and
the enhanced hybrid schedule decoder was calculated. The
obtained throughput increase in enhanced hybrid schedule
decoder is very significant and goes from 30.8% to 109.1%, for
the same SNR performance as in the layered decoder. More
detailed results for codes from 5G NR are shown in Fig. 11.c).
For a layered decoder, the number of pipeline stages does not
have to be as high as 13 if only one cyclic shifter is used. In
[49], the number of pipeline stages was 9. However, even in the
case when the layered decoder has 9 pipeline stages the
equivalent throughput increase of the enhanced hybrid schedule
decoder with 13 pipeline stages is between 16.5% and 75.2%.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

C. Implementation results
The decoder was implemented on the Xilinx ZCU111

development board with the Zynq UltraScale+ RF-SoC device
(XCZU28DR).

Implementation results for WiMAX, DVB-S2X and 5G NR

decoders are shown in Table 2. The number of parallel
processing units for each decoder was set to the maximum
lifting size required by the standard (96 for WiMAX, 360 for
DVB-S2X, and 384 for 5G NR). All three versions support all
codes from their respective standard. Additionally, decoders
can be programmed to decode any QC-LDPC code with every

5.5 6 6.5 7 7.5
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
am

e e
rro

r r
ate

 (F
ER

)

5.5 6 6.5 7 7.5
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

5.5 6 6.5 7 7.5
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100
Flooding
Hybrid schedule
Enhanced
hybrid schedule
Layered

Code rate
22/68

Code rate
22/27

itmax = 10 itmax = 20 itmax = 30

−2 −1.5 −1 −0.5 0 0.5
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
am

e e
rro

r r
ate

 (F
ER

)

−2 −1.5 −1 −0.5 0 0.5
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

−2 −1.5 −1 −0.5 0 0.5
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

itmax = 10 itmax = 20 itmax = 30

Flooding
Hybrid schedule
Enhanced
hybrid schedule
Layered

Fig. 9. SNR performance of various decoding schedules for rate 22/27 and rate 22/68 base graph 1 codes from 5G NR and lifting size Z = 384. Results are given for
QPSK modulation and offset min-sum fixed point implementation with 8 bits for LLRs and 6 bits for messages. Simulated hybrid schedule decoders are with 13
pipeline stages.

−2 −1 0 1 2 3 4 5 6 7
SNR (dB)

5
10
15
20
25
30

Av
er

ag
e i

te
ra

tio
n n

um
be

r

Enhanced
hybrid schedule
Layered schedule

R = 0.32 R = 0.38 R = 0.44 R = 0.50 R = 0.56 R = 0.63 R = 0.69 R = 0.76 R = 0.81

Fig. 10. Average iteration number necessary for decoding of various base graph 1 codes from 5G NR, with lifting size Z = 384. The codes are followng (left to
right): (26112, 8448), (22272, 8448), (19200, 8448), (16896, 8448), (14976, 8448), (13440, 8448), (12288, 8448), (11136, 8448), and (10368, 8448).

0.32 0.38 0.44 0.50 0.56 0.63 0.69 0.76 0.81
Code rate

N
um

be
r o

f c
yc

le
s Layered

Hybrid schedule

0

200

400

600

(a) (b) (c)

0.32 0.38 0.44 0.50 0.56 0.63 0.69 0.76 0.81
Code rate

Th
ro

ug
hp

ut
 in

cr
ea

se
 (%

)

At 10 layered iterations
At 20 layered iterations
At 30 layered iterations

0

25

50

75

100

125

0.32 0.38 0.44 0.50 0.56 0.63 0.69 0.76 0.81
Code rate

0
2
4
6
8

10

A
di

tio
na

l i
te

ra
tio

ns

For equivalence with 10 layered iterations
For equivalence with 20 layered iterations
For equivalence with 30 layered iterations

Fig. 11. Hybrid schedule decoder for 5G NR base graph 1 codes analysis. The number of pipeline stages was set to 13. (a) Number of additional hybrid schedule
decoder iterations needed for the same SNR performance as of the layered decoder at maximum 10, 20, and 30 iterations, for FER = 10−5. (b) Number of cycles per
single iteration for layered and hybrid schedule decoders, including stall cycles. (c) Equivalent throughput increase of hybrid schedule decoder with respect to the
layered decoder for the same SNR performance. Even though the hybrid schedule decoder needs more iterations for the same SNR performance, the throughput
increase is significant because one single iteration in the hybrid schedule decoder lasts much shorter than in the layered decoder.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

lifting size supported by the cyclic shifter at runtime.
Number of pipeline stages in WiMAX and 5G NR decoders

was set to 13, whereas in DVB-S2X it was set to 11, due to the
smaller cyclic shifter complexity. The obtained clock
frequencies were 585.1 MHz, 373.5 MHz and 404.8 MHz for
WiMAX, DVB-S2X and 5G NR decoder respectively. For
maximum lifting sizes, the obtained coded throughput at 10
iterations is between 1.59 Gbps and 1.77 Gbps for WiMAX,
between 3.08 Gbps and 4.32 Gbps for DVB-S2X, and between
3.25 Gbps and 4.92 Gbps for 5G NR.

The implementation results are compared with the relevant
previous work in Table 2: WiMAX implementations from [33],
[50], and [51], and DVB-S2X implementations from [33] and
[49]. The throughput results are given for WiMAX rate 3/4
code, DVB-S2X rate 140/180 code and 5G NR rate 22/68 code
and rate 22/27 code. The results for WiMAX implementation
from [50] and DVB-S2X implementation from [49] are
calculated based on the formula given in the paper. All
decoders in the referenced literature were designed for different
scenarios, hence the maximum number of iterations varied.
Therefore, the throughput normalized to one iteration was
placed in the Table 2 for uniformity.

In previous publications, the Hardware Usage Efficiency
(HUE) was usually expressed as the obtained throughput
divided with the number of used FPGA slices. In Table 2, the
HUE is also calculated for all three other most significant
resources: look-up tables (LUTs), flip-flops (FFs) and RAM
blocks (BRAMs). All FPGA families from Table 2 have LUTs
that can implement any 6-input logic function. All FPGA

families have RAM blocks of 36 kb, except Stratix-V, used in
[49], whose blocks are of 20 kb. Nevertheless, the RAM block
utilization is not presented in [49]. The FPGA family used for
the implementation of the proposed decoder is one of today’s
most modern FPGA families. In order to make a better and fair
comparison with the previous designs, the proposed decoder is
also implemented on the older Virtex-7 FPGA (XC7VX690T),
as recommended in [22]. These results were compared with the
prior work in Table 2 and they show that the decoder presented
in this paper provided the highest HUE for almost all metrics.

The quantization in previous works has been done in various
ways. The column Quant in Table 2 shows the number of bits
used for LLRs (if used at all) and for messages. Even with the
highest precision compared with the previous works, the
obtained HUE in this paper is significantly higher than in the
most previous solutions.

It is important to notice that all previous implementations
supported codes with small differences in check node weights
between the layers. The proposed solution provides easy
implementation of the decoder for highly irregular codes with
large differences in CNW, such as codes from 5G NR.

V. CONCLUSION
In this paper, a novel architecture for QC-LDPC decoding is

presented. The proposed architecture is efficient for decoding
highly irregular QC-LDPC codes without any stall cycles
caused by memory access pipeline conflicts or check node
weight change, even when the number of pipeline stages is
large. The architecture performs the hybrid decoding schedule,

TABLE II
IMPLEMENTATION RESULTS FOR WIMAX, DVB-S2X, AND 5G NR LDPC DECODER AND COMPARISON WITH PRIOR WORK

 Standard
Codeword

length
[bit]

Device
family Quant

Resources utilization
fmax

[MHz]
Tnorm

[Gbps]

HUE (Tnorm/Resources)

Slices LUTs FFs 36k
BRAMs

Mbps/
kSlice

Mbps/
kLUT

Mbps/
kFF

Mbps/
BRAM

[50] WiMAX 2304 Zynq-7000 M4 3732 12250 3732 24 150.0 2.4* 649.5 197.9 301.5 101.0

[51] WiMAX 2304 Virtex-5
M2 1137 3522 847 14.5 162.0 0.8 703.6 227.1 944.5 55.2

M2 5583 18542 3992 80 126.0 3.2 573.2 172.6 801.6 40.0

[49] DVB-S2X 64800 Stratix-V L8-M6 - 63694 75372 - 250.0 10.3* - 161.9 136.8 -

[33]
WiMAX 2304

Virtex-7
M4 12496 40700 35013 40.5 142.8 10.8 840 264.6 307.6 265.9

DVB-S2X 64800 M4 59874 198810 112613 252.5 80.0 30.0 500 150.9 266.4 118.8

This
work

WiMAX 2304

Virtex-7

L8-M6 7906 24228 23290 33.5 314.6 8.5 1076.6 352.0 366.1 254.6

DVB-S2X 64800 L8-M6 23475 73136 68795 127.5 287.4 23.7 1010.6 324.4 344.9 186.1

5G NR 26112 L8-M6
30824 100929 85431 136.5 261.0

20.9 679.1 207.4 245.0 153.4

5G NR 10368 L8-M6 31.7 1029.0 314.2 371.3 232.4

WiMAX 2304

Ultrascale+

L8-M6 4388 24043 23592 33.5 585.1 15.9 3614.3 659.6 672.2 473.4

DVB-S2X 64800 L8-M6 13762 69274 69940 127.5 373.5 30.8 2240.3 445.1 440.8 241.8

5G NR 26112 L8-M6
17665 96625 87751 136.5 404.8

32.5 1837.9 336.0 370.0 237.8

5G NR 10368 L8-M6 49.1 2784.7 508.0 559.4 359.6

Quant: Quantization where LX-MY means that X bits were used for LLRs and Y bits were used for messages; fmax: Maximum operating frequency; Tnorm: Normalized
throughput to one iteration; HUE: Hardware Usage Efficiency; -: not available; *: calculated with the formula from the paper.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

which works as the layered schedule, but switches to flooding
schedule only in cases when a pipeline conflict would occur in
the conventional layered architecture. The hybrid schedule is
then optimized for better SNR performance using the genetic
algorithm based offline PCM reordering. Such enhanced hybrid
schedule leaves almost negligible loss in SNR performance
compared with the fully layered schedule for most test
scenarios, which can be eliminated by adding a few additional
iterations. Even with the addition of extra iterations, the stall
cycles removal provides such high gain in throughput that, for
the same SNR performance, the obtained throughput increase is
between 30.8% and 109.1% for 5G NR codes, in case when 13
pipeline stages are used. Aggressive pipelining provided very
high clock frequencies for decoders implemented for WiMAX,
DVB-S2X, and 5G NR, which further induced high throughput
and high hardware usage efficiency. Implemented decoders
provided multi-gigabit throughputs and showed significant
HUE improvement when compared with the state-of-the-art
works.

ACKNOWLEDGMENT
Authors are thankful to Srđan Brkić, Đorđe Sarač, and

Predrag Ivaniš from the University of Belgrade – School of
Electrical Engineering, Belgrade, Serbia, for valuable
comments and discussions.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.

Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
[2] J. Kim and W. Sung, “Rate-0.96 LDPC decoding VLSI for soft-decision

error correction of NAND flash memory,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 5, pp. 1004–1015, May 2014.

[3] IEEE Standard for Information technology-Telecommunications and
Information Exchange Between Systems-Local and Metropolitan Area
Networks-Specific Requirements Part 3: Carrier Sense Multiple Access
With Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications, IEEE Standard 802.3an-2006, 2006.

[4] Standard for Information Technology—Local and Metropolitan Area
Networks—Specific Requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Standard 802.11-2016, 2016.

[5] Standard for Local and Metropolitan Area Networks—Part 16: Air
Interface for Fixed Broadband Wireless Access Systems, IEEE Standard
802.16-2004, 2004.

[6] Digital Video Broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications;
Part 2: DVB-S2 Extensions (DVB-S2X), ETSI EN 302 307-2 V.1.1.1
(2014-10), 2014.

[7] DOCSIS 3.1: Data-Over-Cable Service Interface Specifications DOCSIS
3.1, Physical Layer Specification, CM-SP-PHYv3.1-I11-170510, 2017.

[8] 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; NR; Multiplexing and channel coding (Release
16), 3GPP TS 38.212 V16.1.0 (2020-03), 2020.

[9] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[10] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Electron. Lett., vol. 33, no. 6,
pp. 457–458, Mar. 1997.

[11] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans. Inf.
Theory, vol. 47, pp. 599–618, 2001.

[12] D.J.C. MacKay. Good error-correcting codes based on very sparse
matrices. IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[13] R. G. Gallager, “Analysis of Number of Independent Decoding
Iterations,” in Low-Density Parity-Check Codes, Cambridge, MA, USA,
MIT Press, 1963, Appendix C, pp. 81–88.

[14] T. J. Richardson and S. Kudekar, “Design of low-density parity check
codes for 5G new radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 28–34,
Mar. 2018.

[15] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes
by probability propagation in graphical models,” IEEE J. Select. Areas
Commun., vol. 16, no. 2, pp. 219–230, Feb. 1998.

[16] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Proc. IEEE Work. Signal Process. Syst.,
Austin, TX, USA, Oct. 2004.

[17] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans.
Commun., vol. 53, no. 2, pp. 209–213, Feb. 2005.

[18] M. K. Roberts and R. Jayabalan, “An area efficient and high throughput
multi-rate quasi-cyclic LDPC decoder for IEEE 802.11n applications,”
Microelectron. J., vol. 45, no. 11, pp. 1489–1498, Nov. 2014.

[19] S. Ajaz, T. T. B. Nguyen, and H. Lee, “An Area-Efficient Half-Row
Pipelined Layered LDPC Decoder Architecture,” J. Semicond. Technol.
Sci., vol. 17, no. 16, pp. 845–853, Dec. 2017.

[20] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits,
vol. 37, pp. 404–412, Mar. 2002.

[21] Z. Wang and Z. Cui, “Low-complexity high-speed decoder design for
quasi-cyclic LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 15, pp. 104–114, 2007.

[22] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A
survey of FPGA-based LDPC decoders,” IEEE Commun. Surveys Tuts.,
vol. 18, no. 2, pp. 1098–1122, 2nd Quart. 2016.

[23] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A scalable decoder
architecture for IEEE 802.11n LDPC codes,” in Proc. IEEE Global
Telecommun. Conf., Nov. 2007, pp. 3270–3274.

[24] C. Marchand, J. B. Dore, L. Conde-Canencia, and E. Boutillon, “Conflict
resolution for pipelined layered LDPC decoders,” in Proc. IEEE Work.
Signal Process. Syst., Tampere, Finland, Oct. 2009, pp. 220–225.

[25] X. Zhao, Z. Chen, X. Peng, D. Zhou, and S. Goto, “DVB-T2 LDPC
decoder with perfect conflict resolution,” Inf. Media Technol., vol. 7,
no. 2, pp. 584-592, Feb. 2012.

[26] Z. Wu, D. Liu, and Y. Zhang, “Matrix reordering techniques for memory
conflict reduction for pipelined QC-LDPC decoder,” in Proc. IEEE/CIC
Int. Conf. Commun. China, Shanghai, China, Oct. 2014, pp. 354–359.

[27] Z. Wu and K. Su, “Updating conflict solution for pipelined layered LDPC
decoder,” in Proc. IEEE Int. Conf. Signal Process. Commun. Comput.,
Ningbo, China, Sep. 2015.

[28] C.-W. Sham, X. Chen, W. M. Tam, Y. Zhao, and F. C. M. Lau, “A layered
QC-LDPC decoder architecture for high speed communication system,”
in Proc. IEEE Asia Pacific Conf. Circuits Syst., Kaohsiung, Taiwan, Dec.
2012, pp. 475–478.

[29] S. Kumawat, R. Shrestha, N. Daga, and R. Paily, “High-throughput
LDPC-decoder architecture using efficient comparison techniques and
dynamic multi-frame processing schedule,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 62, no. 5, pp. 1421–1430, May 2015.

[30] Q. Lu, J. Fan, C.-W. Sham, W. M. Tam, and F. C. M. Lau, “A 3.0 Gb/s
throughput hardware-efficient decoder for cyclically coupled QC-LDPC
codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 1, pp.
134–145, Jan. 2016.

[31] H.-C. Lee, M.-R. Li, J.-K. Hu, P.-C. Chou, Y.-L. Ueng, “Optimization
techniques for the efficient implementation of high-rate layered
QC-LDPC decoders,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 64,
no. 2, pp. 457–470, Feb. 2017.

[32] Implementation and performance of LDPC decoder, document
R1-1700111, 3GPP, Ericsson, Spokane, USA, Jan. 2017.

[33] O. Boncalo, G. Kolumban-Antal, A. Amaricai, V. Savin, and D.
Declercq, “Layered ldpc decoders with efficient memory access
scheduling and mapping and built-in support for pipeline hazards
mitigation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 4,
pp. 1643–1656, Apr. 2019.

[34] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity
approaching irregular low-density parity-check codes,” IEEE Trans.
Inform. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[35] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws to
parallel turbo and LDPC decoder architectures,” IEEE Trans. Inf. Theory,
vol. 50, no. 9, pp. 2002–2009, Sep. 2004.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

[36] E. Amador, R. Pacalet, and V. Rezard, “Optimum LDPC decoder: A
memory architecture problem,” in Proc. 46th ACM/IEEE Des. Autom.
Conf., San Francisco, CA, USA, Jul. 2009, pp. 891–896.

[37] X. Chen, J. Kang, S. Lin, and V. Akella, “Memory system optimization
for FPGA-based implementation of quasi-cyclic LDPC codes decoders,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 1, pp. 98–111, Jan.
2011.

[38] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn, “A
novel LDPC decoder for DVB-S2 IP,” in Proc. Design, Autom. Test Eur.,
Nice, France, Apr. 2009, pp. 1308–1313.

[39] J. Jin and C. Tsui, “An energy efficient layered decoding architecture for
LDPC decoder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 8, pp. 1185–1195, Aug. 2010.

[40] T. T. Nguyen-Ly, V. Savin, X. Popon, and D. Declercq, “High throughput
FPGA implementation for regular non-surjective finite alphabet iterative
decoders,” in Proc. IEEE Int. Conf. Commun. Work., Paris, France, May
2017, pp. 961–966.

[41] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low density parity check codes based on belief
propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May
1999.

[42] J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP
based decoding algorithms of LDPC codes,” IEEE Commun. Lett., vol. 6,
no. 5, pp. 208–210, May 2002.

[43] Zynq UltraScale+ RFSoC RF Data Converter v2.3 - LogiCORE IP
Product Guide, Xilinx, San Jose, CA, USA, Jun. 2020.

[44] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A
flexible FPGA-based quasi-cyclic LDPC decoder,” IEEE Access, vol. 5,
pp. 20965–20984, Mar. 2017.

[45] H.-J. Kang and B.-D. Yang, “Low-complexity, high-speed multi-size
cyclic-shifter for quasi-cyclic LDPC decoder,” Electron. Lett., vol. 54,
no. 7, pp. 452-454, Apr. 2018.

[46] X. Chen, S. Lin, and V. Akella, “QSN-A simple circular shift network for
reconfigurable quasi-cyclic LDPC decoders,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 57, no. 10, pp. 1549–7747, Oct. 2010.

[47] Y. Jung, Y. Jung, S. Lee, and J. Kim, “Low-complexity multi-way and
reconfigurable cyclic shift network of QC-LDPC decoder for
Wi-Fi/WIMAX applications,” IEEE Trans. Consum. Electron., vol. 59,
no. 3, pp. 467–475, Aug. 2013.

[48] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review of
representations and operators,” Artif. Intell. Rev., vol. 13, no. 2,
pp. 129–170, 1999.

[49] C. Marchand and E. Boutillon, “LDPC decoder architecture for DVB-S2
and DVB-S2X standards,” ,” in Proc. IEEE Work. Signal Process. Syst.,
Hangzhou, China, Dec. 2015.

[50] S. Yeşil and M. Arslan, “Dual port ram based layered decoding for multi
rate quasi-cyclic LDPC codes,” in Proc. 12th Int. Conf. Signal Process.,
Hangzhou, China, Oct. 2014, pp. 1524–1530.

[51] V. A. Chandrasetty and S. M. Aziz, “Resource efficient LDPC decoders
for multimedia communication,” Integration, vol. 48, pp. 213–220,
Jan. 2015.

Vladimir L. Petrović (S’19) received the
Dipl. Ing. and M.S. degrees in electrical
engineering from the University of
Belgrade, Serbia, in 2014 and 2015,
respectively.

He is currently a Teaching and Research
Assistant at the University of Belgrade -
School of Electrical Engineering, Serbia,
and a Ph.D. candidate at the same school.

His research interests include VLSI design, communication
systems architectures, digital signal processing, and hardware
implementations of signal processing algorithms.

Mr. Petrović was a recepient of the Best young researcher’s
paper award at IcETRAN 2016, Serbia.

Miloš M. Marković received the Dipl.
Ing. and M.S. degrees in electrical
engineering from the University of
Belgrade, Serbia, in 2018 and 2019,
respectively.

In 2018 he joined Tannera LLC,
Belgrade, Serbia, where he works as a
hardware engineer. His research interests
include VLSI design, communication

systems architectures, and embedded systems.

Dragomir M. El Mezeni was born in
Belgrade, Serbia in 1985. He received the
B.S. degree in electrical engineering from
the University of Belgrade, Serbia, in
2008, M.S. degree in electronics in 2010
and Ph.D. degree in electronics in 2018 at
the same University.

He is currently Assistant Professor of
electrical engineering at the University of Belgrade, Serbia. His
research interests include digital image/video processing,
computational photography and very large scale integration
architectures for digital signal processing.

Lazar V. Saranovac (M’94) was born in
Sremska Mitrovica, Serbia in 1961. He
received the B.S. degree in electrical
engineering from the University of
Belgrade, Serbia, in 1987, M.S. degree in
electronics in 1993 and Ph.D. degree from
the same University in 2001.

He is currently Full Professor of
electrical engineering at the University of

Belgrade, Serbia. His research interests include embedded
systems, digital signal processing and design of digital systems.

Andreja Radošević earned a Ph.D. degree
from Department of Electrical and
Computer Engineering at UC San Diego,
USA, in 2012. His academic research
interests included information and coding
theory, adaptive modulation, channel
estimation and equalization, and spectrally
efficient MIMO-OFDMA transmission
schemes, mainly in the context of

underwater acoustic communications.
In 2012, he joined Qualcomm, where he was one of the key

contributors to development of baseband modems supporting
4G-LTE, WCDMA and TD-SCDMA standards. His role
included algorithm designs for time and frequency
synchronization, turbo decoding, power control, and
interference cancellation. In 2018, he founded Tannera LLC,
Belgrade, Serbia, as an effort to join the wireless and
Internet-of-Things industry frontier by delivering disruptive
and state-of-the-art system solutions.

	I. INTRODUCTION
	Layered QC-LDPC decoder
	A. Message-passing decoding algorithms
	B. Layered decoder architecture

	III. Hybrid schedule QC-LDPC decoder
	A. Hybrid decoding schedule
	B. Decoder architecture
	C. SNR performance optimization

	IV. Results and discussion
	A. Schedule optimization results
	B. SNR performance results
	Implementation results

	V. Conclusion

